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Let V be a complex linear space of dimension # > 0 and T a linear
transformation of V into V. T can be represented with the aid of a basis
of ¥V and of a matrix describing the effect of T on the basis elements.
As it is well known the matrix takes a particularly simple form if the
basis vy, v,, ..., v, can be so chosen that

Tv, =0, + B,v, for 2=12,...,n—1, Tv, WU, (1)

with suitable scalars «;, f, of which g, is restricted to the values 0 and 1,
while o, ; = a, if §, = 1. The matrix so determined is said to have
Jordan normal or Jordan canonical form. This note will deal with the
basis in (1) and with an associated decomposition of ¥ into subspaces
invariant under T. To this end we introduce

DEerFINITION 1. A subspace V' of I with dimension p > 0 is called
Jordan or Jordan subspace with respect to T, if V' has a basis ¢;, ¢,, . . ., ¢,
such that Te,, = ae,, Te, =ae, + e, for k=1,2,...,p—1 We
denote « as eigenvalue of 1,

It is easily verified that ee V' and Te = fe imply either f = « or
¢ = 0, where § denotes the null element of the space. Therefore a Jordan
subspace with respect to T has but one eigenvalue. Definition 1 permits
us to express some of the features of the Jordan normal form by

* Dedicated to Professor A. M. Ostrowski on his 75th birthday.

Linear Algebra and Its Applications 1, 503—510 (1968)
Copyright © 1968 by American Elsevier Publishing Company, Inc.



504 H. F. BUCKNER

THEOREM 1.V is the direct sum of Jordan subspaces Vi, Vy, ..., V,
withrespect to T. 1]V is also the direct sum of Jordan subspaces Wy, W,, .. .,
W, with respect to T then t = s; moreover a 1: 1 correspondence between
the V, and the W, exists such that corvesponding subspaces have dimension
and eigenvalue in common.

The customary proofs of the theorem use concepts and results from
the theory of polynomials and Abelian groups as tools. Typical examples
appear in the books [1, 2]. In this note a new derivation of the theorem
will be given. It will be related to the circumstance that the decomposition
in Theorem 1 can be characterized by a minimum property. Our tools
are confined to elementary results from the theory of polynomials with
complex coefficients. We list them right here:

1. Latin letters followed by (z) denote a polynomial of z. The letters
may have subscripts. If p(z) = a5 + a3z -+ -+ + a,2” and a,, # 0, we

call m the degree of p(z). If m =1 we can write

1

pl) = a, [Tz z)

kol

n,

g, 7£ 31 i _/é .]A’ {2}

with positive integers mz,. The number / over the product sign as well
as the numbers m,, 2, are unique. We call / the width of p(z). If m = 0,
we assign width zero to the polynomial. We introduce the linear trans-
formation (linear operator)

Py =agd = a;T 4+ -4 a, 1" [ = unit operator.

Relations between polynomials such as f(z) = g(z) + h(z), p(2) (2)7(2)
imply (T} — e(T) + A(T), p(T) — g(Tyr(T) and /(T — ¢(Tys + h( Ty,
PO = g(T)yr{T)u for any uel.

2. If p(z) £ 0, g(z) = 0 are given, we may write as a result of the
well-known division algorithm $(z) = a(z)g(z) + b(z), where b(z) either
vanishes identically or has degree less than ¢(z). The polynomials a(z), &(2)
are unique. p(2), ¢(z) can be represented in the form p(z) == d(2)r(2),
¢(2) = d(2)s(z), where 7(z) and s(z) have no zero in common. The so-called
largest common divisor d(z) of p(z) and ¢(z) admits a representation
d(z) = J(2)p(2) + g(2)g(2); a constant factor disregarded, d(z) is unique.
We write plg = 1, if d(z) = const.

3. Let J be an ideal of polynomials, i.e., f(z)p(z) + g{2)¢(z) € J when-
ever p(z), g(z) belong to J. If J contains polynomials p(2) % 0, then a
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polynomial m(z) s 0 of smallest degree exists in J. It divides any poly-
nomial of /. A constant factor disregarded, m(z) is unique. It is called
the minimum polynomial of J.

The following two definitions are known {2].

DEFINITION 2. f(2) is a null polynomial of v € V' with respect to T
if {(T)v=0; g(2) is a null polynomial of T if g(7) = O, where O is the
null operator.

Example. The basis elements of the Jordan subspace V' of V in
Definition 1 satisfy relations €1 =5¢,S=T—al for k=1,2,..,
p — 1 and Se, = 0. It {follows that Se, = S%,,, , =60, and (z — &)’
is seen to be a null polynomial of ¢, ., ,. Any element v € V' has (z — )’
as null polynomial. If V' = V then (z — «)” is also a null polynomial of 7.

The null polynomials of v with respect to 7" form an ideal j(v, 7),
and the null polynomials of 7" form an ideal /(7). We have J(T)C J{v, T),
where C means inclusion or equality. Since v, T, ..., T"v are linearly
dependent, J(v, T) contains polynomials of degree »n. If v, v, ...,9,
is a basis of V then f(z) = f,(2)f5(2) - - - /,(2) with f,(2) € J(v,, T) belongs
to J(T).

DerINITION 3. We denote the minimum polynomial of J(v, T) by
f(z, v) and call it also the minimum polynomial of v with respect to 7.
The minimum polynomial of J{T) is denoted by F(z). We also refer to
it as the minimum polynomial of 7. If WC V is a subspace invariant
under T, the restriction T of T to W gives rise to an ideal of null poly-
nomials of 7°. We write F(z, W) for the minimum polynomial of that
ideal and call it the minimum polynomial of 7".

We observe that F(z, W) divides F(z) and that f(z, v) divides F(z);
Hz, v) divides F(z, W) if ve W.

LemMA 1. Let ueV and f(z), g(z) be such that flg =1, g(T)u = 0;
then v = f(T)u implies u = a(T)v with a suitable a(z), which depends on
1), g(2) only.

Proof. a(2)f(z) 4+ b(2)g(z) = 1 with suitable a(z), b(z); therefore u =
a(D)[(T)u + o(T)g(Thu = a(T)(Tyu = a(T)e.
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Let U = (u4y, g, ..., u,) be a sequence of elements u, of V. We
introduce T [U] as the set of all elements of the form u = > | g/(T)u,
where the g,(z) run through all polynomials. Evidently T[U] is a subspace
of V, invariant under 7. If U = (1) we write TTU] = T [u].

Example. V' = T e ] in the situation of Definition 1. Indeed g(z) =
D alz — a)* ! for any g(z); hence g(T)e, = Dio1ae €V’ since the
¢, can be arbitrarily chosen, all elements g(7)e, exhaust V.

DerFINITION 4. H f(2,v) has degree & and width /, then w(v) =
ik + 1 — 1] is the degree of v under 7. w(U) = w(uy) + w(uy) + -+ +
w(u,,) is the degree of U under T.

DerFINITION 5. The sequence U is called

(1) minimal,if 7[U]C T[U’] implies w(U) < o(U’) for any sequence
(/Y/;
(2} T-independent, if T|U] is the direct sum of the subspaces
Tlu,j, k=12,...,m;

(3) X-vielding, if T[U] contains the set XC .

It is easy to show the existence of minimal sequences. Given X C V
consider all X-yielding sequences U. Such sequences exist; e.g., take
for U a basis of V. Among the X-yielding sequences U there is at least
one of smallest degree. That sequence is obviously minimal. Here we
introduce the statement that any V-yielding minimal sequence provides
Jordan subspaces 7'[u,| in accordance with Theorem 1. Apart from the
case U = (0) no minimal sequence can contain 4, since (@) =1. We
assume U # (f) from here on. No minimal sequence can contain the
same element twice, and for this reason we shall speak of minimal sets
rather than of minimal sequences.

In what follows dim W denotes the dimension of the subspace W C V.

LemMa 2. (a) dim T[U) < w(U); (b) Uisminimalifdim T{U] =
a(U).

Proof. We have dim T[U] < X7 dim T'[w,]. In order to prove
(a) it suffices to show that dim 7' [u] < w(u). Let f(z, u) have degree p.
Then u, Tu, ..., T?7'u form a set of linearly independent elements in
T{u). Now any g(2) can be written in the form g(z) = a(z)f{z, u) + b{z);
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bz) = Dh75 b?*; hence g(T)u = b(Thu = D523 6T u, and u, Tu, ...,
TP~'y are even a basis of T[#]. Thus dim T[u] = p < w(u). This
completes the proof of (a). Statement (b) is a trivial consequence of (a)
and of dim 7T[U] = w(U).

LEMMA 3. U = (u) is mimsmal tf and only if f(z, u) has width one.

Proof. Let f(z, u) have width one and degree . The proof of Lemma
2 shows that dim T [#] = p; but w(#) = p, and {«) is minimal by Lemma
2. Let us now assume that f(z, #) has width / > 1. In this case we can
derive from the decomposition (2) for f(z, #) that f(z, ) = [,(2)fa(2) with
filfs == 1, f, having degree p; > 1 and width /, > 1. The degree of f(z, u)
is p == p; + p,, and the width of f(z, u) is{ = I, + [,. We have a(2), a,(2)
such that a,(2)f;(2) + a5(2)/a(2) = 1. Set now wu; = ay(T)fo(T)u, u, =
a(T)fi(T)u, and U’ = (u,, uy). We have u = u; -+ uy, whence T[U]C
T[U’]. Since f,(2) is a null polynomial of u,, we find w(u,) < p, + 7, — 1
and thus w(U) = o) + o) <py+4L — 1+ pp+ 6L — 1< p -+
I — 1 = w(u). It follows that (#) cannot be minimal if f(z, #) has width
> 1. This completes the proof.

LeEMMA 4. If [(z, u) has width one, T [u] is Jordan, and vice versa.

Prooj. We can assume f(z,4) = (z — a)’; set S= T — ol and
ey =S*u, k=1,2,...,p. The elements ¢, form a basis of T'[u] in
accordance with Definition 1. The example to Definition 2 shows that
the inverse statement is also true.

LeEmMma 5. If U = (uy, 4y, ..., u,) ts a minimal set, then any non-
empty subset of U is also minimal.

Proof. Tt suffices to consider a subset of the form U’ = (u,, u,, . . ., ,),
7 < m. If U’ were not minimal we would have W such that w(W) < w(U’),
TiU'1C T{W]. But then we can construct a set U* out of the elements
of Wandof u, 4, ..., u,, such that T{U]C T[U*], while o(U*) < (U},
which contradicts the assumption on U.

Lemmas 3, 4, 5 yield the result that any minimal set U = (u;, u,, . . ., %,,)

has the property that all T'{u,] are Jordan. We proceed to look for other
properties. A minimal set will be called pure if all T [#,] have the same
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eigenvalue, which we shall denote as the eigenvalue of the pure set. If
U is not pure, it can be split into disjoint pure subsets Uy, U, ..., U,
with distinct eigenvalues «;, %, ..., o, respectively. Introducing the
abbreviations W = T(U], W, = T|U,}, k= 1,2,..., x, we introduce

LEMMA 6. W is the divect sum of W, W,, ..., and W, The subspaces
W, are uniquely determined by W and T.

Proof. Any element w,e W, has null polynomials of the form (z — o)™ ;
therefore f(z, w,) = (z — ock)"'” with some integer m" < n. Let p, be the

largest of all m'’, as w, runs through W,. Set P,(z) = (+ — ock)Pk, Plz) =
[ [io1 Pul2), and Q,(2) = P(2)/P,(z). We can interpret P,(z) as minimum
polynomial of the restriction of T to W,, ie., P,z) =F(z, W,). In
similar vein P(z) = F(z, W). The latter relation shows at once that P(z)
depends on W and T only, and the same is true with respect to the poly-
nomials P,(z), Q,(z), since these are uniquely determined by P(z). Consider
now w=1w, +w,+ -+ +w, w,eW,. Any element we W can be
written that way, and vice versa any sum of elements w; belongs to W.
We find Q. (T)w == Q,(T)w, together with P (1w, = 0. By virtue of
P,|Q, =1 and of Lemma 1 we can find a polynomial a,(z), depending
on P,, Q, only, such that w, = 4,(7)w. Thus w, is uniquely determined
by w; W, is obviously the range of the restriction of a,(T) to W. This
completes the proof.

LEMMa 7. If U = (4, ty, ..., u,,) is pure, it is also T-independent.

Proof. Let « be the eigenvalue of U. ILet polynomials g,(z) exist
such that D% | g,(T)u, = 0 while not all g,(T)u, = 0. We write g,(z) =
(z — o)*h,(z), where k(@) == 0. We have ¢, < w(u,) for at least one k.
Without loss of generality we can assume ¢; < w(#%,) and also ¢, <C g, for
k=23,..., m. Sinceh(2)|f(2, u;) = 1, Lemma 1 yields w; = a(T)h(T)u,
with some a(z). This leads to D2 | a(T)g,(T)u, = 0 or S™u* = § with
S=T —oal,and u* = uy + D0, 7n(Tuy; 7,(2) = al2)hy(2)(z — "
Introduce U* = (u*, 1y, ug, ..., u,). Clearly T[U]C T[U*]. If u* =10
then U cannot be minimal; if u* £ (), we have ¢, > 0 and w(U) — w(U¥*) =
o(u;) — o@*) = o(u) — ¢; >0, which also contradicts the minimal
property of U. This means that the polynomials g,(z), as specified above,
do not exist, and U is 7-independent as asserted.
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Using the denotations of Lemma 7 and its proof we form the sets
X, = (S'uy, S'ug, ..., S'u,)*, i=0,1,...; the asterisk indicates that
elements S*u, 6 only are to be listed. It follows from Lemma 7 that

X,, if not empty, is T-independent. Therefore if D; = dim T[X|],
D; = ' dim T{S'u,). (3)
£=1

Now T[S',] is evidently Jordan, and
dim T[S%,] = o(S'u,) = w(w,) —i; Stu, # 6. 4)

Let us now introduce a function p(d) of the nonnegative integers d as
follows: p(d) = 0 if d #= w(w,) for all k; otherwise p(d) shall equal the
number of those elements #; for which d = w(u;). Relations (3), (4) can
now be rewritten as

Dy
D,= 2 pld)(d— 1), 1=0,1,...,Dy— L (8)

alit1

Interpreted as a system of linear equations for the unknowns p(1), p(2), . ..,
the relations (5) have Gaussian form and yield the unique solution

plt) = Di+1 —2D;,+ D, _,. (6)

Now T [X,] can be interpreted as the image of T [U] under the transforma-
tion S*. This implies that D, is uniquely determined by 7[U] and 7.
Thus (6) implies

LeEMmma 8. The numbers w(w,), associated with a pure set U =
(4, g, . . ., u,,), thetr order disregarded, are uniquely determined by T [U]
and by T.

The results from some of the preceding lemmas can be summed up
by '

THEOREM 2. Any minimal set U = (uy, uy, . .., #t,,) is T-independent;
the subspaces T [u,] are Jordan; the numbers w{u,) are uniquely determined
by T[U) and T. 1}, vice versa, a sequence U 1s T-independent and if
the T(u,) are Jordan, then U is minimal.

Theorem 2 yields Theorem 1 in every detail if the minimal set is
V-yielding. We have already remarked that the existence of such sets
Is trivial.
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