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Let V be a complex linear space of dimension n > 0 and T a linear 

transformation of V into V. T can be represented with the aid of a basis 

of V and of a matrix describing the effect of T on the basis elements. 

As it is well known the matrix takes a particularly simple form if the 

basis vr, ‘us, . . , v, can be so chosen that 

TV, = q.vfi + PA _ , for k-l,2 ,..., n-l, TV, = a,vU, (1) 

with suitable scalars tci, pk of which bk is restricted to the values 0 and 1, 

while ak+l = ak if ,8k = 1. The matrix so determined is said to have 

Jordan normal or Jordan canonical form. This note will deal with the 

basis in (1) and with an associated decomposition of V into subspaces 

invariant under T. To this end we introduce 

DEFINITION 1. A subspace V’ of V with dimension fi > 0 is called 

Jordan or Jordan subspace with respect to T, if V’ has a basis e,, e,, . . . , e9 

such that Tel,=uep, Te,=ae,+ek,, for k-l,2 ,..., p-1. \Ve 

denote M as eigenvalue of V’. 

It is easily verified that e E V’ and Te = ,6’e imply either fi = a or 

e = 8, where 8 denotes the null element of the space. Therefore a Jordan 

subspace with respect to T has but one eigenvalue. Definition 1 permits 

us to express some of the features of the Jordan normal form by 

* Dedicated to Professor A. M. Ostrowski on his 75th birthday. 
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THEOREM 1. V is the direct sum oj Jordan wbspaces V,, V,, . . , V, 

with respect to 7‘. I/ I’ is also the direct s%brn of Jordan subs@aces W,, W,, . . , 

IV, with respect to T then t = s; moYeouer a 1 : 1 corresfiondence between 

the V, and the IT’, exists such that corresfionding subsfiaces have dimensiolz 

and eigenvalue irz common. 

The customary proofs of the theorem use concepts and results from 

the theory of polynomials and Abelian groups as tools. Typical examples 

appear in the books [l, 21. In this note a ne?e, derivation of the theorem 

will be given. It will be related to the circumstance that the decomposition 

in Theorem 1 can be characterized by a minimum property. Our tools 

are confined to elementary results from the theory of polynomials with 

complex coefficients. M’e list them right here: 

1. Latin letters followed by (z) denote a polynomial of z. The letters 

may have subscripts. If P(Z) = a, + alp -1 . . . + a,,$” and ai,, f 0, we 

call m the degree of p(z). If 1~2 > 1 \ve can write 

with positive integers n~,~. The number I over the product sign as well 

as the numbers WAN, Z~ are unique. We call 1 the width of p(z). If m = 0, 

we assign width zero to the polynomial. We introduce the linear trans- 

formation (linear operator) 

p(T) = a,I -; a,Y’ -k . . + a,,,‘i‘“‘, I = unit operator 

Relations between polynomials such as /(z) = g(z) + /z(z), p(z) = q(z)+) 

imply j(T) = g(T) + 12.(T), fi(7‘) = 4(7‘)?(r) and f(T)11 = g(T)u + It(T)zt, 

F(T)24 == q(T)r(T)u for any II E I”. 

2. If p(i) f 0, q(2) $ 0 are given, we may write as a result of the 

well-known division algorithm p(z) = a(zjg(z) + b(z), where b(zj either 

vanishes identically or has degree less than q(z). The polynomials a(z), b(z) 

are unique. p(s), q(2) can be represented in the form /I(Z) = d(z)r(z), 

q(z) = d(z)s(z), where Y(Z) and s(z) have no zero in common. The so-called 

largest common divisor d(z) of P(Z) and q(2) admits a representation 

d(z) == /(z)#(z) + g(z)@); a constant factor disregarded, d(z) is unique. 

\\‘e write PI4 = 1, if d(z) E const. 

3. Let J l,e an ideal of polynomials, i.e., /(Z)!(Z) + g(z)p(z) E J when- 

ever p(z), q(2) belong to J. If J contains polynomials p(z) $ 0, then a 
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polynomial m(z) $ 0 of smallest degree exists in J. It divides any poly- 

nomial of J. A constant factor disregarded, m(z) is unique. It is called 

the minimum polynomial of J. 

The following two definitions are known ;2 I. 

DEFINITION 2. f(z) is a null polynomial of z, E I/ with respect to T 

if f( T)v = 0 ; g(z) is a null polynomial of T if g(T) = 0, where 0 is the 

null operator. 

Example. The basis elements of the Jordan subspace I” of V in 

Definition 1 satisfy relations ekS1 = Se,, S = T - cd, for k = 1, 2, . . . , 

~5 - 1 and Se,, = 8. It follows that Se0 = SqeP+,_, = 19, and (z - CC)~ 

is seen to be a null polynomial of ep+r_ q. Any element u E I/’ has (z - CC)” 

as null polynomial. If P’ = I/ then (z - c$’ is also a null polynomial of 7’. 

The null polynomials of ‘u with respect to T form an ideal J(v, T), 

and the null polynomials of T form an ideal J( T). We have J( T) C J(v, T), 

where c means inclusion or equality. Since II, TV, . . . , T’b are linearly 

dependent, J(v, T) contains polynomials of degree n. If z+, ‘uZ, . . ., v,~ 

is a basis of I’ then f(z) = fl(z)fz(z) * * . f,(z) with fk(z) E J(v~, T) belongs 

to J(T). 

DEFINITION 3. We denote the minimum polynomial of J(v, T) by 

f(z, V) and call it also the minimum polynomial of v with respect to T. 

The minimum polynomial of J(T) d IS enoted by F(z). We also refer to 

it as the minimum polynomial of T. If WC I/ is a subspace invariant 

under T, the restriction T’ of T to W gives rise to an ideal of null poly- 

nomials of T’. We write F(z, W) for the minimum polynomial of that 

ideal and call it the minimum polynomial of T’. 

We observe that F(z, W) divides F(z) and that f(z, v) divides F(z); 

f(z, v) divides F(z, W) if v E W. 

LEMMA 1. Let u E I/’ alzd f(z), g(z) be such that fjg = 1, g(T)u = 0; 

then v = f(T)u implies u = a(T)v with a suitable a(z), which depends on 

f(z), g(z) onb. 

Proof. a(z)f(z) + b(z)g(z) = 1 with suitable a(z), b(z); therefore u = 

a(T)f(T)u + b(T)g(T)u = a(T)f(T)u = a(T)v. 
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Let C = (ur, uz, . . , u,,J be a sequence of elements ~6~ of V. \Ye 

introduce T[U] as the set of all elements of the form u = ~~=i gi( T)ui, 

where the gk(z) run through all polynomials. Evidently T [U] is a subspace 

of V, invariant under T. If I’ = (u) we write TrUl = T[u]. 

Example. V’ = Y‘lei] in the situation of Definition 1, Indeed g(z) =-= 

zk ck(z - a)” -’ for any g(z); hence g(T)e, = zi=, ckek E V’; since the 

ck can be arbitrarily chosen, all elements g(T)ei exhaust V’. 

DEFINITION 4. If f(z, Z) has degree Fz and width I, then W(V) = 

,k + 1 - 11 is the degree of II under T. to(U) = w(ul) + w(u,J + . . . + 

w(u,,) is the degree of I’ under T. 

DEFINITION 5. The sequence G is called 

(1) minimal, if T[U] c T[Ci’l implies co(U) < w(U’) for any sequence 

C’ ; 

(2) T-independent, if TLC] is the direct sum of the subspaces 

T[u,], K = 1, 2,. . .,m; 

(3) X-yielding, if T!U] contains the set XC I’. 

It is easy to show the existence of minimal sequences. Given XC I7 

consider all X-yielding sequences U. Such sequences exist; e.g., take 

for CT a basis of V. Among the X-yielding sequences U there is at least 

one of smallest degree. That sequence is obviously minimal. Here we 

introduce the statement that any V-yielding minimal sequence provides 

Jordan subspaces 7‘[zbkj in accordance with Theorem 1. Apart from the 

case U = (0) no minimal sequence can contain 8, since I = 1. We 

assume U # (0) from here on. No minimal sequence can contain the 

same element twice, and for this reason we shall speak of minimal sets 

rather than of minimal sequences. 

In what follows dim W denotes the dimension of the subspace WC I/. 

LEMMA 2. (a) dim T [C] ,( w(U) ; (b) U is minimal if dim T [CJ] = 

m(U). 

Proof. We have dim T ilij < ckm_l dim ?‘ [uk]. In order to prove 

(a) it suffices to show that dim T [u] ,( w(u). Let f(z, u) have degree fi. 

Then u, Tu, . . . , Tr-‘u form a set of linearly independent elements in 

T[zL!. Now any g(z) can be written in the form g(z) = a(z)f(z, u) + b(z); 
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b(z) = C$:A b,zk; hence ,g(T)u = b(T)u = ~~~~ b,T’u, and U, Tu, . . . , 

IP’-lu are even a basis of T [u]. Thus dim T [u] = p < o(u). This 

completes the proof of (a). Statement (b) is a trivial consequence of (a) 

and of dim T [lJ] = w(U). 

LEMMA 3. U = (u) is minimal if and only if f(z, u) has width one. 

Proof. Let f(z, u) have width one and degree 9. The proof of Lemma 

2 shows that dim T [u] = fi; but w(w) = p, and (u) is minimal by Lemma 

2. Let us now assume that f(z, u) has width I > 1. In this case we can 

derive from the decomposition (2) for f(z, u) that f(z, u) = f,(z)f&z) with 

fllf2 = 1, fk having degree p, > 1 and width I, > 1. The degree of f(z, u) 

is p = p, + pz, and the width of f(z, u) is 1 = I, + 1,. We have a,(z), a2(z) 

such that aI(z)fl(z) + a2(z)fz(z) = 1. Set now ZL~ = a,(T)f,(T)u, u2 = 

al(T)f and U’ = (ul, uz). We have u = ztr + uuz, whence T[U] C 

T [U’]. Since fh(z) is a null polynomial of ‘ilk, we find ~u(zt~) < 9, + 1, - 1 

and thus CO(U’) = o(z~r) + LC)(U~) < p, + I, - 1 + p, + I, - 1 < p -+ 

1 - 1 = W(U). It follows that (u) cannot be minimal if f(z, zt) has width 

> 1. This completes the proof. 

LEMMA 4. If f(z, u) has width one, T [u] is Jordan, and vice versa. 

Proof. iYe can assume f(z, u) = (z - c#’ ; set S = T - uI and 

ek = S k-‘~, k = 1, 2,. . . , $. The elements e, form a basis of T[u] in 

accordance with Definition 1. The example to Definition 2 shows that 

the inverse statement is also true. 

LEMMA 5. If U = (Ml, U2, . . . , u,,,) is a minimal set, then any non- 

empty subset of U is also minimal. 

Proof. It suffices to consider a subset of the form U’ = (.ur, uuz, . . . , q), 

Y < m. If U’ were not minimal we would have W such that co(W) < w(‘U’), 

T[U’] C T[W]. But then we can construct a set U* out of the elements 

of W and of u,+, , . , . , u,, such that T[U] C T[U*], while w(U*) < w(U), 

which contradicts the assumption on U. 

Lemmas 3,4,5 yield the result that any minimal set U = (ul, u,, . , . , urn) 
has the property that all T[u,] are Jordan. We proceed to look for other 

properties. A minimal set will be called pure if all T[uk] have the same 
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cigenvalue, which we shall denote as the eigenvalue of the pure set. If 

U is not pure, it can be split into disjoint pure subsets U,, U,, . . . , U, 

with distinct eigenvalues xi, x2, . . , x,~ respectively. Introducing the 

abbreviations W = T[C 1, TV,< = T 1 U,?j, 1s = 1, 2, . . . , x, we introduce 

LEMMA 6. W is the direct sum of W,, W,, . . . , and W,. The subspaces 

W,; aye uniquely determined by W and T. 

Proof. Any element WOE wk has null polynomials of the form (z - tlJm’; 

therefore f(z, u”~) = (z - tlJm” with some integer m” < 1%. Let p, be the 

largest of all In”, as ream runs through W,. Set Pk(z) = (z - CC,)~~, P(z) = 

nt=i PA(z), and Q,+(Z) = P(z)/P,(z). W e can interpret Pk(z) as minimum 

polynomial of the restriction of T to IV,, i.e., Pk(z) = F(z, W,). In 

similar vein P(z) = F(z, IV). The latter relation shows at once that P(z) 

depends on It’ and T only, and the same is true with respect to the poly- 

nomials Pk(z), ok(z), since these are uniquely determined by P(z). Consider 

now w = ZJ, + zE2 + . . . f w,, WA E w,. ,4ny element w E W can be 

written that way, and vice versa any sum of elements WJ; belongs to W. 

M’e find QL(T)uj == Qk(T)wk together with P,(T)w, -= 8. By virtue of 

P,IQ, = 1 and of Lemma 1 we can find a polynomial ah(z), depending 

on P,, Qk only, such that w, == a,(T)w. Thus wk is uniquely determined 

by w; W, is obviously the range of the restriction of a,(T) to W. This 

completes the proof. 

J,EMJIA i. I,/ c’ = (lL1, Z12, . , u,) is pure, it is also T-independent. 

Proof. Let a be the eigenvalue of CT. Let polynomials gk(z) exist 

such that Ci=i gk( T) uk = 19 while not all sk( T),u, = 0. We write gk(z) = 

(z - ~)~~h~(z), where h,(a) # 0. \Ve have qk < oj(uJ for at least one h. 

Without loss of generality we can assume q1 < o(uJ and also q1 ,( qk for 

k = 2, 3,. . ., m. Since h,(z) lf(z, ,ul) = 1, Lemma 1 yields wr = a( T)h,( T)til 

with some a(z). This leads to ckm_, a(T)gk(T)u, = 0 or S%t* = 0 with 

S = T ~ al, and u* = ur + zrxE_2~I(T)uUR; rk(z) = a(z)h,(z)(z - a)4k-91. 

Introduce U* = (zL*, a~~, us, . . . , u,J. Clearly T[U]C T[U*]. If u* = 6 

then U cannot be minimal; if u* # 0, we have q1 > 0 and w(U) - w(U*) = 

co(uJ -_ ok > o~(uJ - q1 > 0, which also contradicts the minimal 

property of U. This means that the polynomials gk(z), as specified above, 

do not exist, and U is T-independent as asserted. 
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Using the denotations of Lemma 7 and its proof we form the sets 

X, = (S”ti,, Su,, . . ., S’u,)*, i = 0, 1, . . . ; the asterisk indicates that 

elements S’u, # &’ only are to be listed. It follows from Lemma 7 that 

Xi, if not empty, is T-independent. Therefore if Di = dim T[Xi], 

Di = 5 dim T [Siti,]. 
k=l 

(3) 

Now T [.%t,] is evidently Jordan, and 

dim T[Siuk] = w(Siuk) = cu(uk) - i; SiUk # 8. (4) 

Let us now introduce a function p(d) of the nonnegative integers d as 

follows: p(d) = 0 if d # w(uL) for all k; otherwise p(d) shall equal the 

number of those elements ui for which d = w(zQ. Relations (3), (4) can 

now be rewritten as 

Di= 2 p(d)(d-i), i=O,l,..., D,- 1. (5) 
d=i+l 

Interpreted as a system of linear equations for the unknowns p(l), p(2), . . . , 

the relations (5) have Gaussian form and yield the unique solution 

P(i) = Di+l - 20, + D, --1. 63 

Now T [X,] can be interpreted as the image of T [U] under the transforma- 

tion Si. This implies that Di is uniquely determined by T[U] and T. 

Thus (6) implies 

LEMRU 8. The gaumbers cu(uk), associated with a pure set U = 

( f+, $9 * . . > u,,), their order disregarded, are zbniquely determined by T [U] 

and by T. 

The results from some of the preceding lemmas can be summed up 

by 

THEOREMS 2. Any minimal set U = (al, u2, . . . , CL,,,) is T-independent; 

the subspaces T [uk] are Jordan; the numbers w(z+) are uniquely determined 

by T [U] and T. If, vice versa, a sequence U is T-independent and if 
the T[uk] are Jordan, then U is minimal. 

Theorem 2 yields Theorem 1 in every detail if the minimal set is 

V-yielding. We have already remarked that the existence of such sets 

is trivial. 
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